DNA charge transport: conformationally gated hopping through stacked domains.

نویسندگان

  • Melanie A O'Neill
  • Jacqueline K Barton
چکیده

The role of base motions in delocalization and propagation of charge through double helical DNA must be established experimentally and incorporated into mechanistic descriptions of DNA-mediated charge transport (CT). Here, we address these fundamental issues by examining the temperature dependence of the yield of CT between photoexcited 2-aminopurine (Ap) and G through DNA bridges of varied length and sequence. DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)(n)()G (n = 0-9, 3.4-34 A) and mixed bridges, ApAAIAG and ApATATG. CT was monitored through fluorescence quenching of Ap by G and through HPLC analysis of photolyzed DNA assemblies containing Ap and the modified guanine, N(2)-cyclopropylguanosine ((CP)G); upon oxidation, the (CP)G radical cation undergoes rapid ring opening. First, we find that below the duplex melting temperature ( approximately 60 degrees C), the yield of CT through duplex DNA increases with increasing temperature governed by the length and sequence of the DNA bridge. Second, the distance dependence of CT is regulated by temperature; enhanced DNA base fluctuations within duplex DNA extend CT to significantly longer distances, here up to 34 A in <10 ns. Third, at all temperatures the yield of CT does not exhibit a simple distance dependence; an oscillatory component, with a period of approximately 4-5 base pairs, is evident. These data cannot be rationalized by superexchange, hopping of a localized charge injected into the DNA bridge, a temperature-induced transition from superexchange to thermally induced hopping, or by phonon-assisted polaron hopping. Instead, we propose that CT occurs within DNA assemblies possessing specific, well-coupled conformations of the DNA bases, CT-active domains, accessed through base motion. CT through DNA is described as conformationally gated hopping among stacked domains. Enhanced DNA base motions lead to longer range CT with a complex distance dependence that reflects the roles of coherent dynamics and charge delocalization through transient domains. Consequently, DNA CT is not a simple function of distance but is intimately related to the dynamical structure of the DNA bridge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid glasses at 77 K.

We have proposed that DNA-mediated charge transport (CT) is gated by base motions, with only certain base conformations being CT-active; a CT-active conformation can be described as a domain, a transiently extended pi-orbital defined dynamically by DNA sequence. Here, to explore these CT-active conformations, we examine the yield of base-base CT between photoexcited 2-aminopurine (Ap*) and guan...

متن کامل

Sequence dependence of charge transport through DNA domains.

Here we examine the photooxidation of two kinetically fast electron hole traps, N4-cyclopropylcytosine (CPC) and N2-cyclopropylamine-guanosine (CPG), incorporated in DNA duplexes of various sequence using different photooxidants. DNA oxidation studies are carried out either with noncovalently bound [Ru(phen)(dppz)(bpy')]3+ (dppz = dipyridophenazine) and [Rh(phi)2(bpy)]3+ (phi = phenanthrenequin...

متن کامل

DNA mediated charge transport: characterization of a DNA radical localized at an artificial nucleic acid base.

DNA assemblies containing 4-methylindole incorporated as an artificial base provide a chemically well-defined system in which to explore the oxidative charge transport process in DNA. Using this artificial base, we have combined transient absorption and EPR spectroscopies as well as biochemical methods to test experimentally current mechanisms for DNA charge transport. The 4-methylindole radica...

متن کامل

High Electronic Conductance through Double-Helix DNA Molecules with Fullerene Anchoring Groups

Determining the mechanism of charge transport through native DNA remains a challenge as different factors such as measuring conditions, molecule conformations, and choice of technique can significantly affect the final results. In this contribution, we have used a new approach to measure current flowing through isolated double-stranded DNA molecules, using fullerene groups to anchor the DNA to ...

متن کامل

Long-range DNA charge transport.

The stack of base pairs within double helical DNA has been shown to mediate charge transport reactions. Charge transport through DNA can result in chemistry at a distance, yielding oxidative DNA damage at a site remote from the bound oxidant. Since DNA charge transport chemistry depends on coupling within the stacked base pair array, this chemistry is remarkably sensitive to sequence-dependent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 37  شماره 

صفحات  -

تاریخ انتشار 2004